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1 Problem Description and Motivation

In this project we have surveyed Stochastic Gradient Langevin Dynamics, its variants and its application to
Dirichlet-Multinomial Regression (DMR) model. Monte-Carlo approaches have been extensively used for
Bayesian inference, and proven to be superior over many methods. However, MCMC procedures generally
have a random-walk behaviour and thus leads to slow convergence. We explore an old but classic concept
of Physics called the Langevin Dynamics derived from Hamiltonian mechanics and Reimannian geometry
which have been recently applied to utilize the gradient information making it computationally less expensive
particularly for large datasets. This technique provide fast convergence to the true posterior without over-fitting
to the data.

2 Literature Review

In the modern scenario, there is an increasing demand for scalable MCMC methods for probabilistic modeling
and inference over large scale datasets. A lot of recent work has been done focused on this aspect. Several
modification, improvements and novel ideas have been proposed, which we surveyed in this project. The main
focus is to propose a stochastic mini-batch versions of the MCMC algorithms to overcome the computationally
intensive framework of the traditional methods. In 2010, Neal[2], proposed a new class of algorithm called
Hamiltonian Dynamics having its origin in Statistical Physics. Inspired by this work, Welling and Teh[4], ap-
plied this technique to modify the update equation of parameters in the stochastic gradient step, by adding a
noise term, which is known as Stochastic Gradient Langevin Dynamics(SGLD). They hence proposed an algo-
rithm to perform MCMC which is similar to Stochastic Gradient Descent, where each update to the parameters
uses only a subset of the data, instead to using the entire dataset. Stochastic Gradient Descent has made a huge
impact on reducing learning time for non-Bayesian algorithms and SGLD extends its use for Bayesian learning
as well. However, SGLD has its limitations as it couldn’t be applied when concerned parameters lie in some
constrained sets, for example in a probability simplex. To address this specific issue, i.e. application of SGLD
when the parameters lie in a probability simplex, Patterson and Teh[3] (2013), proposed a new method called
Stochastic Gradient Riemannian Langevin dynamic(SGRLD) and demonstrated its application in topic mod-
elling using Latent Dirichlet Allocation(LDA) in an online mini-batch setting. There are many variants of LDA
where application of SGRLD can be investigated. One of them is Dirichlet -multinomial Regression (DMR)
for topic model with metadata. Below, we give an intelligible description of each of the SGLD, SGRLD and
DMR models.
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2.1 Stochastic Gradient Langevin Dynamics

SGLD is basically a combination of two well known class of algorithm i.e Stochastic Optimization and
Langevin Dynamics. Langevin Dynamics injects noise into the gradient descent parameter updates. This
allows the algorithm to explore the whole posterior rather than just converging to a MAP estimate.

Let θ denote parameter vector, p(θ) a prior distribution and p(x|θ), likelihood. Let X = {xi}Ni=1 be data. Then
posterior is given by

p(θ|X) ∝ p(θ)
N∏
i=1

p(xi|θ) (1)

Stochastic Optimization: It is one of the mostly widely used class of algorithm for machine learning often
used to scale up algorithms to extend their use to big data. It processes a mini-batch of dataset in each iteration
of parameter update, similar to working in an online setting. These mini-batch parameter updates are equal to
the batch-updates in expectation.
In this framework, at each iteration t, a subset of n data items Xt = {xt1, ..., xtn} is given, and the parameters
are updated as follows:

∆θt =
εt
2

(
∇ log p(θt) +

N

n

n∑
i=1

∇ log p(xti|θ)

)
(2)

where the step sizes satisfy the following condition:
∞∑
t=1

εt =∞ and
∞∑
t=1

ε2t <∞ (3)

The above constraints on step size are required to ensure convergence to a local maxima. The first condition on
step size ensures that the parameters will reach high probability regions irrespective of where it was initialized,
while the second condition ensures its convergence to the mode. To ensure that step size decreases with time,
Welling and Teh[4] suggest to set them as εt = a(b+ t)−γ , where γ ∈ (0.5, 1]

Langevin Dynamics: This method of optimization injects a Gaussian noise into the parameter updates of
gradient descent steps. The injected noise is a zero mean Gaussian with variance equal to twice the step size
for that iteration. Since the updates are stochastic, this method gives a distribution over the parameters unlike
gradient descent which only gives a point estimate of the parameters. The updates are given as follows:

∆θt =
εt
2

(
∇ log p(θt) +

n∑
i=1

∇ log p(xt|θ)

)
+ ηt (4)

where ηt ∼ N (0, εt)

Stochastic Gradient Langevin Dynamics: Combining the Stochastic Optimization and Langevin Dynamics,
Welling and Teh[4] propose the SGLD update as follows:

∆θt =
εt
2

(
∇ log p(θt) +

N

n

n∑
i=1

∇ log p(xti|θt)

)
+ ηt (4)

where ηt ∼ N (0, εt) and step size decreases as εt = a(b+ t)−γ , where γ ∈ (0.5, 1].
Initially when the gradients are large, the former term of the update is dominating and the algorithm is said to
be in the Stochastic Optimization stage. Eventually as the gradients become small, the noise term dominates
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and the algorithm is said to have transitioned into Langevin Dynamics stage for sufficiently large t. Once
the algorithm has entered the Langevin Dynamics phase, it starts to generate samples from a distribution that
is ”close” to the posterior. It does allow to capture uncertainty in the estimates of parameters in a Bayesian
manner. Another advantage of this algorithm is that the MH rejection rate goes to zero asymptotically as
t increases, which is favourable for scalability. A detailed discussion on the convergence analysis of this
algorithm can be found in Welling and Teh[4].

2.2 Stochastic Gradient Riemannian Langevin dynamics

Stochastic Gradient Langevin Dynamics has greatly helped in building highly scalable probabilistic model.
However, when it comes to constrained set of parameters it can’t be applied. To address one such issue, specif-
ically when parameter lies in a probability simplex, Patterson and Teh[3] (2013) proposed a new method com-
bining the idea of reparameterization from Reimannian geometry and SGLD. Parameter lying on a probability
simplex is given by,

∆K = {(π1, π2, ...πK) : πk ≥ 0,
∑
k

πk = 1} ⊆ RK (5)

There are two major issues which have to be addressed and solved before applying SGLD over this parameter.
First of all, the above probability simplex is compact and has boundary. Therefore occurrences of updates
that brings the vector out of the simplex has to be taken care of. Secondly, in practice such parameters could
be sparse as in LDA, i.e most of the entries are close to zero and masses are assigned mostly to corners and
boundary of the simplex. In case of LDA gradients calculation in SGLD requires inverting the entries of π, it
results in the problem of gradient being blown up.

To solve such issues, different ways of parameterizing the probability simplex are considered. It comes out that
the choice of parameterization is not obvious but guided by Riemannian geometry of the simplex. The different
kinds of parameterization are summarized in the figure below.

Figure 1: Table Courtesy Patterson and Teh [3]

Among the possible parameterization that take care of the issues, expanded mean parameterization is used
for our problem of probability simplex. The preconditioning matrix G(θ) corresponding to this choice of
reparameterization is diagonal which makes it computationally efficient.

Having investigated the Riemannian geometry, the Langevin dynamics is modified by incorporating a precon-
ditionaing matrix G(θ) to overcome the limitation of isotropic proposal distribution in the case of Langevin
dynamics and the new algorithm is called Riemannian Langevin dynamics. The update equation in this case
becomes,

θ∗ = θ +
ε

2
µ(θ) +G−

1
2 (θ)ζ, ζ ∼ N (0, εI) (6)
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where the jth component of µ(θ) is given by,

µ(θ)j =

(
G−1(θ)

(
∇θ log p(θ) +

n∑
i=1

∇θ log p(xi|θ)

))
j

− 2

D∑
k=1

(
G−1(θ)

∂G(θ)

∂θk
G−1(θ)

)
jk

+

D∑
k=1

(
G−1(θ)

)
jk
Tr

(
G−1(θ)

∂G(θ)

∂θK

)
(7)

The first term in (7) gives the natural gradient of the log posterior. Note that standard gradient gives the direction
of steepest ascent in Euclidean space. In contrast, the natural gradient gives the direction of steepest descent by
incorporating knowledge of geometry given by preconditioning matrix G(θ). Rest of the terms gives curvature
of the manifold defined by G(θ) for small changes in θ. Note that the update equation depends on the choice
of G(θ) which in turn depends on the choice of parametrization.

2.3 Dirichlet-multinomial Regression (DMR) for topic model with metadata

Text data sometimes contain meta information such as authors, publications, dates, etc. However, the standard
LDA model does not incorporate any of these. Several extensions of the basic model have been proposed to
take this meta data into account. But most of these extension form a fully generative story. In a recent work
Minmo and McCallum ([1]), a regression model has been proposed in which they regress on the metadata. The
DMR model is quite accommodative in terms of type of metadata, i.e. it can be continuous (e.g. rating) as well
discrete (e.g. year, journal) keeping the inference simple. Below is the graphical model.

The graphical notation is exactly the same as shown in figure (2) however, θk ∼ Dirichlet(β) for each topic
k as in the standard LDA model, but in our model we propose a different data generation scheme (described in
section 3).

3 Novel Contribution

The work by Mimno and McCallum [1] on DMR topic model use stochastic EM sampling scheme to train their
model. However, since we would use SGRLD to perform inference, we have redefined the generative story of
the model.
Notations

• xd is the feature vector of the metadata

• Nd denotes the number of words in each document

• ηd is the topic proportion vector

• λk is the feature vector of each topic

• πk is word proportion vector

Data Generation

1. For each topic k = 1, . . . ,K

• Draw λk ∼ N (0, σ2I)

• For each word w in the vocabulary
– Draw θkw ∼ Gamma(β, 1)

– Set πkw = θkw∑
w θkw

2. For each document d

• For each topic k, set αdk = exp(xTd λk)
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• Draw ηd ∼ Dirichlet(αd)

• For each word n = 1, . . . , Nd in document d

– Choose the topic for the word zdn ∼ multinoulli(ηd)
– Generate word from the chosen topic wdn ∼ multinoulli(πzdn)

The graphical notation of our model would be as shown below

λk

µ

σ2

K

αd ηd

xd

zd,n wd,n θk β

D

Nd K

Figure 2: Graphical Model Notation

Note that due to the nice structure of our model we collapse ηd. We have three hyper-parameters namely µ, σ2

and β. This leaves us with λ , θ and z as unknown parameters, whose updates are derived using SGRLD.

3.1 Parameter Updates

Note that the standard LDA model does not have any meta-information to model and thus has same α associated
with every document. However, in our model we have αd for each document. We derive the SGRLD updates
as follows:

θ∗kw =

∣∣∣∣θkw +
ε

2

(
β − θkw +

|D|
|Dt|

∑
d∈Dt

Ezd|wd,θ,α[ndkw − πkwndk.]
)

+ (θkw)
1
2 ζkw

∣∣∣∣ (6)

, where ζkw ∼ N (0, ε).

Note that since θkw > 0, we use the mirroring trick in the update above. Also, note that this update requires
posterior over zd. We shall implement Gibbs sampling to infer the same.

p(zdi = k | wd, αd, θ) =

(
αdk + n

\i
dk.

)
θkwdi∑

k

(
αdk + n

\i
dk.

)
θkwdi

where \i represents a count excluding the topic assignment variable we are updating

Note that since λ is an unconstrained parameter, we would update it using standard SGLD.
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∂L
∂λkt

=
∑
d

xdt exp (xTd λk)×(
Ψ
(∑

k

exp (xTd λk)
)
−Ψ

(∑
k

exp (xTd λk) + nd
)
+

Ψ
(

exp (xTd λk) + nk|d
)
−Ψ

(
exp (xTd λk)

))
− λkt
σ2

= −λkt
σ2

+
∑
d

f(xd)

where L is the complete log-likelihood

∆λkt =
εt
2

(
− λkt
σ2

+
|Sd|
D

∑
d∈Sd

f(xd)
)

+ ηt

where ηt ∼ N (0, εt)

4 Experimental Results

We have implemented the DMR topic model using metadata. Mimno and McCallum[1] have implemented
this model using stochastic EM. We have implemented this model using a combination of SGLD and SGRLD
algorithms according to the update equations derived in the previous section. We have used a dummy
dataset containing 100 documents, each document having 10 words. The dataset we used can be found at
https://github.com/mpkato/dmr. Given the small size of the dataset, we have chosen number of
topics to be 3. The implementation of our algorithm mainly relies on the collapsed Gibbs sampling of topic
variable zd’s required for the parameter updates. This was the computationally challenging step, we shall
discuss this in more detail by the end of this section.
Evaluation of the model is carried out using held-out validation. The train to test split proportions are set
to 9 : 1 as used by Patterson and Teh[3]. We use perplexity as the evaluation measure. The perplexity plot
obtained for our model is given in figure 4.
Since we have implemented our model on a dummy dataset, we now demonstrate a few results that justify
that model is giving desired results. We show evolution of word proportion vectors πk for the first topic.
Figure 3 shows the proportion π0 at iterations i = 0, 100, 200. We can observe that initially no word has a
large peek as all the πk’s are generated using Dirichlet(β). However after a few iterations we observe that
word proportions start concentrating on a few words for a given topic, as we would expect for a topic model.
Moreover, Figure 5 shows the plot of all the πk’s and we observe that peaks are different for different topics,
as we would expect.

We have not implemented the model on a real dataset because of the scalability issue. Patterson and Teh[3]
have stated in the section of results on Wikipedia corpus that they have not used Gibbs sampling since the
dataset is very large. Once this issue has been addressed, only step remaining is to tune the hyper-parameters.

5 What we learned from the project

We learned a new approach to scale machine learning models which basically combines two fairly old ideas
of stochastic optimization and Langevin dynamics. We also learned of new topic model called DMR which
incorporates meta-information of each document. We modified the generative story of DMR and inferred the
model parameters using SGRLD.
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(a) Initial Word Proportion for Topic 0 (b) Word Proportion for Topic 0 after 100 iterations

(c) Word Proportion for Topic 0 after 200 iterations

Figure 3

6 Future Possibilities

We can train and test our model on a real dataset and compare it with the existing approaches. We expect the
model to give better results compared to standard LDA model due to incorporation of meta data. Also, this
model is an extension of DMR topic model because our model takes a fully Bayesian approach. The applica-
tions of DMR topic model in terms of discovering patters such as author profile and evolution of popular topics
over time can similarly be explored for our model. SGRLD can also be applied to Poisson Matrix factorization.
Infact, it can be implemented on various machine learning models that have constrained parameters and has
scalability issues and one can compare its performance with the existing state-of-the-art methods.
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Figure 4: Test set perplexities

Figure 5: Evolution of πk with iterations
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