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1 Introduction

Distributions with better ability to represent data with minimal assumptions has always attracted
statisticians. Over past few years, skew-normal distribution has been increasingly popular as we
know that a lot of data is skewed these days. One of early developments was by Prof. Azzalini[2]
who defined the skew normal distribution as follows

f(x;λ) = 2φ(x)Φ(λx) x ∈ R, λ ∈ R

Note that it is a proper density function because if we consider two random variables X and Y
following standing normal distribution and any real number λ then,

P (Y ≤ λX) =
1

2
=

∫ ∞
−∞

φ(x)Φ(λx)dx

We can add the location and scale parameters to the distribution, and the density function
changes as follows

f(x;λ, µ, σ) =
2

σ
φ
(x− µ

σ

)
Φ
(λ(x− µ)

σ

)
Here, λ is the skewness parameter and the pdf can take a variety of shapes, however, there are
certain issues. The estimation of parameters is not easy, it cannot have a heavy tail and MLE
estimates may not always exists. But it can be extended easily to multivariate setting.

1.1 Power Normal Distribution

The distrubtion of Power normal distribution looks like the following

F (x;α) = [Φ(x)]α

where α(> 0) is the skewness parameter.
Similar to skew normal, in this distribution also we can have the scale and location parameter,
and the density function has the following form

f(x;α, µ σ) =
α

σ

[
Φ
(x− µ

σ

)]α−1
φ
(x− µ

σ

)
Note that, for this distribution even though the MLE estimates of the parameters would always
exists but are non-trivial to calculate. Moreover, it can’t be used to analyze heavy tail data.

1.2 Geometric Skew Normal Distribution

Now we look at a three parameter skew distribution which does not have the issues present in the
distributions discussed above.
Consider the random variabel N having Geometric distribution with parameter p and let
X1, X2, . . . be i.i.d random variables following standard normal distribution. Now define a random
variable X as follows

X =

N∑
i=0

Xi

We call X to follow geometric skew distribution (GSN). The pdf with scale and location
parameter turns out to be the following
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f(x;µ, σ, p) =

∞∑
k=1

p

σ
√
k
φ
(x− kµ
σ
√
k

)
(1− p)k−1

With decrease in p the variance as well as the tail probabilities increase.

2 Characteristics

The expression of mean and variance are as follows

E(X) =
µ

p
V ar(X) =

σ2p+ µ2(1− p)
p2

E(Xm) = p

∞∑
n=1

(1− p)n−1cm(nµ, nσ2)

where cm(nµ, nσ2) = E(Y m), where Y∼N(nµ, nσ2)

The distribution has the property of infinite divisibility. It is also geometric stable. Consider Xi’s
iid GSN(µ, σ, p) and M ∼ GE(q) both independent where 0 < q < 1. Consider the random
variable X s.t.

X =

M∑
i=1

Xi

Then it turns out that X ∼ GSN(µ, σ, pq)
Also, the X ∼ GSN(µ, σ, p) can be decomposed in the following manner

X = Y +

Q∑
i=1

Yi

where Q ∼Poisson(λ) and Y ∼ N(µ, σ2). Moreover, Yi|Zi ∼ N(µZi, σ
2Zi) such that

P (Zi = k) =
(1− p)k

λk

where k ∈ and λ = −lnp

3 Bayesian Inference

3.1 Objective

We want to incorporate prior information in order to get better estimates of the parameters,
thereby leading to a better fit to the data. We use joint distribution of x and N instead of
marginal of X, because the calculations become intractable in case of marginal distribution of X.
We take suitable priors on each the parameters simultaneously and find their MAP estimates in
an iterative manner. Earlier research work has also assumed priors, but none contains priors on all
the three-parameters at the same time. We would use statistical tests to measure the goodness of
fit.
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3.2 The Likelihood and the priors

The joint PDF of X and N is where X ∼ GSN(x;µ, σ, p) and N ∼ GE(p) is given by

fX,N (x, n) =
1

σ
√

2πn
exp
(
− 1

2nσ2
(x− nµ)2

)
p(1− p)n−1

We will take beta prior on p, Gaussian prior on µ and inverse gamma prior on σ2, all independent
of each other

P (p) =
1

B(α, β)
pα−1(1− p)β−1

P (µ) =
1√

2πb2
exp
(
− 1

2b2
(µ− a)2

)
P (σ2) =

dc

Γ(c)
(σ2)(−c−1)e

−d
σ2

3.3 Posterior

Π(µ, σ, p|{xi}, {mi}) ∝
n∏
i=1

( 1

σ
exp
(
− 1

2miσ2
(xi −miµ)2

)
p(1− p)mi−1

)
pα−1(1− p)β−1

exp
(
− 1

2b2
(µ− a)2

)
(σ2)(−c−1)exp

(−d
σ2

)
Π(µ, σ, p|{xi}, {mi}) = Π(µ, σ, | {xi}, {mi})Π(p | {xi}, {mi})

Π(µ | σ, {xi}, {mi}) ∼ Normal(â, b̂2)

Π(σ2 | µ, {xi}, {mi}) ∼ InvGamma(c+ n/2, d+K/2)

Π(p | {xi}, {mi}) ∼ Beta(n+ α,

n∑
i=1

mi − n+ β)

where

â =
(∑n

i=1 xi
σ2

+
a

b2

)/(∑n
i=1mi

σ2
+

1

b2

)
b̂2 =

(∑n
i=1mi

σ2
+

1

b2

)−1
K =

n∑
i=1

(xi −miµ)2

mi

We will have to choose appropriate values of all hyper-parameters and sample µ, σ, p using the
above distributions in an iterative manner.
We will make use of the following equation

E(N | X = x, µ, σ, p) =

∑∞
n=1(1− p)n−1exp(− 1

2σ2n (x− nµ)2)
√
n∑∞

k=1(1− p)k−1exp(− 1
2σ2k (x− kµ)2)/

√
k

E(N−1 | X = x, µ, σ, p) =

∑∞
n=1(1− p)n−1exp(− 1

2σ2n (x− nµ)2)/n3/2∑∞
k=1(1− p)k−1exp(− 1

2σ2k (x− kµ)2)/
√
k
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The iterative algorithm to find mi’s by sampling from the posterior

1. Initialize µ0, σ0, p0

2. For t = 0, 1, 2 . . .

(a) mi,t = E(N | X = xi, µ
(t), σ(t), p(t)) for each i ∈ [n]

(b) li,t = E(N−1 | X = x, µ, σ, p)

(c) µ(t+1) ∼ Π(µ | σ(t), {xi}, {mi,t})
(d) (σ(t+1))2 ∼ Π(σ2 | µ(t), {xi}, {mi,t}, {li,t})
(e) p(t+1) ∼ Π(p | {xi}, {mi,t})

3. Repeat until convergence

The iterative algorithm to find mi’s by taking MAP estimates of parameters

1. Initialize µ0, σ0, p0

2. For t = 0, 1, 2 . . .

(a) mi,t = E(N | X = xi, µ
(t), σ(t), p(t)) for each i ∈ [n]

(b) li,t = E(N−1 | X = x, µ, σ, p)

(c) µ(t+1) = ât

(d) (σ(t+1))2 = d+Kt/2
c+n/2+1

(e) p(t+1) = n+α−1∑n
i=1mi,t+α+β−2

3. Repeat until convergence

where

ât =
(∑n

i=1 xi
(σ(t))2

+
a

b2

)/(∑n
i=1mi,t

(σ(t))2
+

1

b2

)
Kt =

n∑
i=1

x2i li,t − 2xiµ
(t) +mi,t(µ

(t))2

If we take try to get the MAP estimate for mi instead of taking the expected value, then following
happens:

P (N = n | X = x) =
P (X = x,N = n)

P (X = x)
∝ P (X = x,N = n) = fX,N (x, n)

fX,N (x, n) =
1

σ
√

2πn
exp
(
− 1

2nσ2
(x− nµ)2

)
p(1− p)n−1

log f = −1

2
ln n− 1

2σ2

(x2
n

+ nµ2
)

+ n ln(1− p) + k

∂log f

∂n
=

1

σ2

(
− σ2

n
+
x2

n2
− µ2 + 2σ2ln(1− p)

)
∂2log f

∂n2
=

1

2n2
− x2

σ2n3
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Applying the first order optimality,

∂log f

∂n
= 0 =⇒ cn2 + σ2 − x2 = 0

where c = µ2 − 2σ2ln(1− p), solving the above quadratic in n we get

n =
−σ2 ±

√
σ4 + 4cx2

2c

since, n cannot take negative values, we take

n =
−σ2 +

√
σ4 + 4cx2

2c
> 0

But, in order for above n to be a maxima, we must have ∂2log f
∂n2 < 0 at this value of n.

∂2log f

∂n2
< 0 =⇒ 1

2
− x2

σ2n
< 0 =⇒ n <

2x2

σ2

The above condition need not be always satisfied, so the root of quadratic can also be a minima
instead of a maxima depending on the values of x, σ, µ, and p. Moreover, if we perform linear
search over some finite values (say 1, 2, . . . , 8) and choose the one with highest probability, even
then the estimates are farther to the true value compared to the estimates obtained using
expected value. Hence using any of these techniques, we don’t get good estimates, thus we stick to
expected value estimate.

3.4 Simulation

We generate 500 data points generated with the following parameters

µ = 2

σ = 1

p = 0.5

We denote the hyperparameters as follows

α := shape parameter of Beta prior on p
β := scale parameter of Beta prior on p

a := mean of Gaussian prior on µ
b := standard deviation of Gaussain prior on µ

c := shape parameter of Inverse Gamma prior on σ2

d := scale parameter of Inverse Gamma prior on σ2
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Figure 1: α = 1, β = 1, a = 0, b = 100, c = 1, d = 1 when using linear search for optimal m’s
instead of expected value
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Figure 2: α = 1, β = 1, a = 0, b = 100, c = 1, d = 1
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Figure 3: α = 1, β = 1, a = 0, b = 100, c = 1, d = 1, when starting with a wild guess
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Figure 4: α = 100, β = 100, a = 2, b = 0.01, c = 100, d = 101, when starting with an informative
prior
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4 Data Analysis

We use the following dataset of 72 observations to test the effectiveness of the model. Without
loss of generality, we divide all observations by 50 to ease estimation purposes.

Figure 5: Guinea pig data set

Figure 6: α = 1, β = 1, a = 0, b = 100, c = 0.1, d = 0.1
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As evident from the table above, we get the following estimates

µ̂ = 1.123

σ̂ = 0.413

p̂ = 0.563

The log-likelihood for these estimates turns out to be −107.13
Comparing it with the MLE estimates [1]

µ̂ = 1.131

σ̂ = 0.589

p̂ = 0.566

The log-likelihood for these ML estimates turns out to be −109.92

Estimates Log Likelihood KS Test Statistic p-value
MLE -109.25 0.112 0.3
MAP -107.13 0.089 0.6

Figure 7: A comparison of probability density function along with histogram, between MLE and
MAP estimates
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Figure 8: A comparison of probability distribution function with histogram

We also did a similar analysis for another dataset containing 69 observations.

Figure 9: DataSet
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Figure 10: Estimates of µ, σ, p after convergence

As evident from the table above, the estimates are

µ̂ = 2.459

σ̂ = 0.477

p̂ ≈ 1

Note that this data turns out to follow a normal distribution (not skewed, p = 1). As stated
earlier, GSN incorporates the usual normal distribution as a special case.
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Figure 11: Histogram of data

Figure 12: Normed histogram of the data and PDF
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Figure 13: Cumulative histogram of the data and CDF

With these estimates, the Kolmogorov-Smirnov (KS) test statistic and the associated p values are
0.037 and 0.9, respectively.

5 Conclusion

In this project, we developed a Bayesian framework for GSN and estimate its parameters using
prior, data and an iterative procedure, since estimate of one parameter depends on rest of the
parameters. We found that these estimates are better compared to MLE[1] as well as Azzalini’s [2]
skew normal distribution in terms of good fit measured by KS test statistic and its associated p
value.

6 Future Work

We would like to extend this analysis to a mixture of GSNs, where we expect the data to come
from more than one GSN with different weights to each. We can also develop better ways to set
the prior parameters.

f(x | {µk}, {σk}, {pk}, {πk}) =

K∑
k=1

πkf(x;µk, σk, pk)

s.t.

K∑
k=1

πk = 1

We futher plan to extend each of these scenarios to a multivariate setting.
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